If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+12k=28
We move all terms to the left:
k^2+12k-(28)=0
a = 1; b = 12; c = -28;
Δ = b2-4ac
Δ = 122-4·1·(-28)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-16}{2*1}=\frac{-28}{2} =-14 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+16}{2*1}=\frac{4}{2} =2 $
| 4+m=11/6 | | 6x+7+4x+5=180 | | 9+14x=25 | | 13-(2k+2)=2(k+2)+3k | | 14=-5(-4x-7) | | 1x+11=8+-3 | | -5+3v=-14 | | 92=4(-3r-1) | | -22=-4+y/3 | | -4+5x^2=6x | | 1a+13=-6 | | 5-2x=1/2-3x+13 | | X+1/4=x-3/6 | | 16(x+2)-8=16x+23 | | 10=5u+5 | | -1m+2=-9 | | 10=5u=5 | | 7x+8x-6=180 | | 4/12=-1x | | x+.1x=45 | | x/3-4/3=10/3 | | -6k=5=12 | | -448=7(8m-8) | | 6w-3=9 | | -6=-(x+3) | | 4w+9=-8 | | 3.02x+1.18=10.92 | | 6y−1=23 | | |2+2b|+1=3 | | y/5+6=8 | | 3x+5=−5x+133x+5=−5x+13 | | x-6=-7+x |